ЛЕКЦИЯ 9 ИССЛЕДОВАНИЕ ПОВЕДЕНИЯ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ

§1. Признаки монотонности функции на интервале

Определение. Говорят, что функция f(x) возрастает (не убывает) на интервале (a; e), если для любых двух точек x_1 и x_2 интервала (a; e) из условия $x_1 < x_2$ следует неравенство $f(x_1) < f(x_2)$ (соответственно $f(x_1) \le f(x_2)$).

Теорема 1.1. Для того, чтобы дифференцируемая на интервале (a; e) функция f(x) не убывала (не возрастала) необходимо и достаточно, чтобы $\forall x \in (a; e)$ выполнялось неравенство $f'(x) \ge 0$ $(f'(x) \le 0)$.

Теорема 1.2. Если функция f(x) дифференцируема на интервале (a; e) и f'(x) > 0 (f'(x) < 0) на (a; e), то f(x) возрастает (убывает) на (a; e).

§2. Локальный экстремум функции

Пусть функция f(x) определена всюду в некоторой окрестности точки x_0 .

Определение. Говорят, что функция y = f(x) имеет в точке x_0 локальный максимум (минимум), если существует такая окрестность точки x_0 , в которой при $x \neq x_0$ выполняется неравенство $f(x) < f(x_0)$ (соответственно $f(x_0) < f(x)$). Локальный максимум и локальный минимум объединяются общим названием — локальный экстремум (или просто экстремум).

Теорема 2.1. (Необходимое условие локального экстремума). Если функция y = f(x) дифференцируема в точке x_0 и имеет в этой точке локальный экстремум, то $f'(x_0) = 0$.

Точки, в которых первая производная функции обращается в ноль, называются стационарными.

Точки, в которых производная функции либо обращается в ноль, либо не существует называются критическими.

Теорема 2.2. (Первое достаточное условие локального экстремума). Пусть функция y = f(x) дифференцируема в некоторой окрестности критической точки x_0 . Тогда, если при переходе через точку x_0 (в сторону возрастания x) производная

f'(x) меняет знак с плюса на минус (с минуса на плюс), то в точке x_0 функция y = f(x) имеет локальный максимум (минимум). Если при переходе через точку x_0 производная функции не меняет знака, то в точке x_0 функция f(x) не имеет экстремума.

Теорема 2.3 (Второе достаточное условие локального экстремума). Пусть функция y = f(x) в данной стационарной точке x_0 имеет вторую производную. Тогда, если $f''(x_0) < 0$ ($f''(x_0) > 0$), то функция f(x) в точке x_0 имеет локальный максимум (минимум).

§3. Выпуклость и вогнутость графика функции

Определение. Говорят, что график функции y = f(x) на интервале (a; e) выпуклый (вогнутый), если в пределах интервала (a; e) график лежит не выше (не ниже) любой касательной.

Теорема 3.1. Если функция y = f(x) имеет на интервале (a; e) вторую производную и если эта производная не положительна (не отрицательна), то график функции f(x) на интервале (a; e) выпуклый (вогнутый).

§4. Точки перегиба графика функции

Точкой перегиба графика функции y = f(x) называется его точка, при переходе через которую кривая меняет свою вогнутость на выпуклость или наоборот.

Теорема 4.1. (Необходимое условие перегиба). Если функция y = f(x) имеет вторую производную в некоторой окрестности точки x_0 и $f''(x_0) = 0$. Тогда, если в пределах указанной окрестности вторая производная имеет разные знаки слева и справа от x_0 , то график функции имеет перегиб в точке $(x_0, f(x_0))$.

§5. Асимптоты графика функции

Определение. Прямая x=a называется вертикальной асимптотой графика функции y=f(x), если хотя бы один из пределов $\lim_{x\to a+0} f(x)$, $\lim_{x\to a-0} f(x)$ равен $+\infty$ или $-\infty$.

Определение. Прямая y = kx + 6 называется наклонной асимптотой графика функции y = f(x) при $x \to +\infty$, если эта функция представлена в виде $f(x) = kx + 6 + \alpha(x)$, где $\alpha(x) \to 0$ при $x \to +\infty$.

Теорема 5.1. Для того, чтобы прямая $y = kx + \varepsilon$ была наклонной асимптотой графика функции y = f(x) при $x \to +\infty$ необходимо и достаточно, чтобы существовали пределы $\lim_{x \to +\infty} \frac{f(x)}{x} = k$, $\lim_{x \to +\infty} (f(x) - kx) = \varepsilon$. Аналогично вводится понятие наклонной асимптоты графика функции при $x \to -\infty$.

§6. Схема построения графика функции

Изучение заданной функции и построение ее графика целесообразно проводить по следующей схеме.

- 1. Найти область определения функции и выяснить поведение функции в точках разрыва и граничных точках области определения.
 - 2. Найти вертикальные и наклонные асимптоты, если они существуют.
 - 3. Установить, является ли функция четной, нечетной, периодической.
 - 4. Найти локальные экстремумы и интервалы возрастания и убывания

функции.

- 5. Найти интервалы выпуклости, вогнутости и точки перегиба графика функции.
 - 6. Построить график функции.